
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2021 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Classes (continued)

© 2021 Arthur Hoskey. All
rights reserved.

REVIEW - Access Modifiers

 Private member
◦ Only visible from inside the object
◦ Cannot be seen from "outside"

 Public members
◦ Visible from the outside

 Now look at the class definition again:
◦ Look for the public members
◦ Look for the private members

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

REVIEW - Sample Class Definition

public class Car

{

// Attributes

private int year;

private int speed;

private String color;

// Behaviors

public void Accelerate() {

speed = speed +10;

}

public void Decelerate() {

speed = speed - 10;

}

}

© 2021 Arthur Hoskey. All
rights reserved.

REVIEW - Access Modifiers

 private keyword
• Used for most instance variables.
• private variables and methods are accessible
only to methods of the class in which they are
declared.

• Declaring instance variables private is known
as "data hiding".

 public keyword
• Used for most methods.
• Public methods are accessible outside the
class.

© 2021 Arthur Hoskey. All
rights reserved.

REVIEW - Access Modifiers

 If the private members cannot be seen
from the outside the class then how do we
change them?

© 2021 Arthur Hoskey. All
rights reserved.

REVIEW - Get and Set Methods

 Use get/set methods to change private
member variables.

 private instance variables

• Cannot be accessed directly by clients of the
object.

• Use set methods to change the value.

• Use get methods to retrieve the value.

© 2021 Arthur Hoskey. All
rights reserved.

REVIEW - Get and Set Methods

public class Car
{

// Attributes
private int year;
private int speed;
private String color;

// Behaviors
public int GetYear() { return year; }
public int GetSpeed() { return speed; }
public String GetColor() { return color; }

public void SetYear(int newYear) { year = newYear; }
public void SetSpeed(int newSpeed) { speed = newSpeed; }
public void SetColor(String newColor) { color = newColor; }

// Accelerate and Decelerate not shown
}

© 2021 Arthur Hoskey. All
rights reserved.

REVIEW - Scope of variables

 Local Variables - Declared in the body of method. Can only be used within
that method.

 Instance Variables – Declared in a class declaration but not in a method.
Each object of the class has a separate instance of the variable.

public class MyClass {

int x;

public void myMethod {

int y;

y = 10;

x = 20;

}

public void otherMethod() {

x = 20;

y = 30;

}

}

© 2021 Arthur Hoskey. All
rights reserved.

x is an instance variable (accessible

from all methods of the class)

y is a local variable for myMethod (only

accessible from inside myMethod)

x can be used in both of these places

because member methods have

access to all member variables

Y is local to myMethod so it CANNOT

be used here (y is out of scope)

Variable Resolution

public class Car
{

// Attributes
private int year;
private int speed;
private String color;

// Behaviors
Get and set methods not shown

public void Accelerate() {
speed = speed +10;

}
public void Decelerate() {

speed = speed - 10;
}

}

Variable Resolution In Member Method

1. First, look for a local declaration of

the variable. If found then use it.

2. Second, look for the variable in the

class scope.

No local speed variable

so it uses the member

variable speed

Are you allowed to declare both

a local variable and a class-level

variable with the same name???

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

 What will memory allocations (in RAM)
look like for the following code?

public static void main(String []args) {

int id;

}

 Declared one int type variable.

main() is the starting

point for all Java

programs

© 2021 Arthur Hoskey. All
rights reserved.

Variables In Memory (RAM)

int
id

Computer Memory (RAM)

int takes up 4

bytes in

memory

Showing a simplified view of
memory here but will go into more

detail later in the semester

id

variable

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

 What will memory allocations (in RAM)
look like for the following code?

public static void main(String []args) {

int id;

id = 10;

}

Declare variable and

assign value

© 2021 Arthur Hoskey. All
rights reserved.

Variables In Memory (RAM)

int
id
10

Computer Memory (RAM)

id variable

now has the

value 10

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

 What will memory allocations look like for
the following code?

public static void main(String []args) {

int id = 10; // Declare and initialize

int age = 20; // Declare and initialize

}

 Declared two int type variables.

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

int
id
10

int
age
20

Computer Memory (RAM)

If you make a change to the id

variable will it effect the age

variable?

id

variable

age

variable

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

 Assume the previous definition of the Car
class.

 What will memory allocations (in RAM) look
like for the following code?

public static void main(String []args) {
int id = 10;
int age = 20;
String d = "Yanks";

Car myCar; // Declaring a variable of type Car

myCar = new Car(); // Call new to create instance

}
Is there a

memory leak??

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

int
id
10

int
age
20

int
year

int
speed

String
color

String
d
"Yanks"

Computer Memory (RAM)

This is a simplified view of what is happening
with classes in memory

myCar

(contains 3 member

variables, 2 int and 1 String)

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

 What will memory look like if we declare
and create another instance of the car
class?

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

 Assume the previous definition of the Car class.

 What will memory allocations (in RAM) look like for the
following code:

public static void main(String[] args)
{

int id = 10;
int age = 20;
String d = "Yanks";
Car myCar;
Car anotherCar; // Different car object

myCar = new Car();
anotherCar= new Car();

}

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

int
id
10

int
age
20

int
year

int
speed

String
color

String
d
"Yanks"

int
year

int
speed

String
color

Computer Memory (RAM)

EVERY instance of Car has its own
full set of the member variables!!!

anotherCar

variable

myCar

variable

© 2021 Arthur Hoskey. All
rights reserved.

Access Modifiers

 How do we use the Car class in code?

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

public static void main(String[] args)

{

Car myCar;

myCar = new Car();

myCar.SetSpeed(10);

myCar.SetYear(2020);

myCar.SetColor("black");

}

What does memory

look like AFTER

running this line?

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

int
year
2020

int
speed
10

String
color
"black"

int
speed

String
color

Computer Memory (RAM)

If you change the year member variable
will it effect the speed member variable?

myCar

variable

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

public static void main(String[] args)

{

Car myCar;

myCar = new Car();

SetSpeed(10);

myCar.SetYear(2020);

myCar.SetColor("black");

}

What is wrong

with this

code???

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

public static void main(String[] args)

{

Car myCar;

myCar = new Car();

SetSpeed(10); // Incorrect

myCar.SetYear(2020);

myCar.SetColor("black");

}

What is wrong with this

code???

ANSWER

You must call the member

method with respect to an

instance variable

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

public static void main(String[] args)
{

Car myCar;

myCar = new Car();

myCar.SetSpeed(10);
myCar.SetYear(2020);
myCar.SetColor("black");

myCar.Accelerate();
}

What does

memory look like

AFTER running

this line?

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

int
year
2020

int
speed
20

String
color
"black"

int
speed

String
color

Computer Memory (RAM)

The speed member variable now has the value 20

myCar

variable

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

public static void main(String[] args)
{

Car myCar, anotherCar;

myCar = new Car();
anotherCar = new Car();

myCar.SetSpeed(10);
myCar.SetYear(2020);
myCar.SetColor("black");

anotherCar.SetSpeed(20);
anotherCar.SetYear(2022);
anotherCar.SetColor("red");

}

What does

memory look like

AFTER running

this line?

Must call member

methods with

respect to a given

instance

Must call new for

every instance

© 2021 Arthur Hoskey. All
rights reserved.

Classes In Memory

2020
year

10
speed

"black"
Color

int
speed

String
color

2022
year

20
speed

"red"
color

Computer Memory (RAM)

Each instance of the Car class has its own section of
memory.

myCar

variable

anotherCar

variable

© 2021 Arthur Hoskey. All
rights reserved.

Calling a Method

 If we call the Accelerate() method on the
anotherCar instance what will memory
look like?

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Calling a Method

public static void main(String[] args)
{

Car myCar, anotherCar;

myCar = new Car();
anotherCar = new Car();

myCar.SetSpeed(10);
myCar.SetYear(2020);
myCar.SetColor("black");

anotherCar.SetSpeed(20);
anotherCar.SetYear(2022);
anotherCar.SetColor("red");

anotherCar.Accelerate();
}

Call Accelerate()

on the

anotherCar

instance

© 2021 Arthur Hoskey. All
rights reserved.

Calling A Method

2020
year

10
speed

"black"
Color

int
speed

String
color

2022
year

30
speed

"red"
color

Computer Memory (RAM)

If you make a change to one instance it does NOT effect
any other instance.

myCar

variable

anotherCar

variable

After calling
Accelerate() on

anotherCar the speed
of anotherCar

changed but NOT the
speed of myCar

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

 How do we initialize an object?

 A special method called a constructor is
used to initialize an instance of an object.

 The constructor gets called when the
"new" method runs.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

public class Car
{

// Attributes
private int year;
private int speed;
private String color;

// Behaviors
Get/Set and Accelerate and Decelerate methods not shown

// Default Constructor – Takes no parameters
public Car() {

year = 2021;
speed = 0;
color = "Red";

}
}

Car class contains a

constructor

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

public static void main(String[] args)

{

Car myCar;

// New instance using a default

// constructor

myCar = new Car();

}
This call to new will

call the default

constructor

© 2021 Arthur Hoskey. All
rights reserved.

Memory After Default Constructor
Runs

int
year
2021

int
speed
0

String
color
"red"

int
speed

String
color

Computer Memory (RAM)

myCar

variable

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

 Default constructor

 Takes no parameters

 Assigns starting values to attributes

 If you do not define any constructors then a
default constructor is created automatically by
the compiler behind the scenes.

 This automatically created default constructor
initializes all attributes to their default values (for
example, int → 0).

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

public class Car
{

// Attributes
private int year;
private int speed;
private String color;

// Behaviors
// Get/Set go here…
// Accelerate goes here…
// Decelerate goes here…

}

This Car class does NOT

contain a

constructor

There are NO

consturctors defined

so the compiler will

create a default one

automatically

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

public static void main(String[] args)

{

Car myCar;

// New instance

myCar = new Car();

}
New calls the

automatically

generated default

constructor for

the class

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

 Constructors with parameters

 You can initialize attributes to any value by
passing in data to the constructor.

 Use a parameter for every value that you want to
be able to initialize from outside the class.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

public class Car
{

// Attributes
private int year;
private int speed;
private String color;

// Behaviors
Get/Set and Accelerate and Decelerate methods not shown

// Constructor
public Car(int newYear, int newSpeed, String newColor) {

year = newYear;
speed = newSpeed;
color = newColor;

}
}

Sets all the

values

© 2021 Arthur Hoskey. All
rights reserved.

Constructors

public static void main(String[] args)

{

Car myCar;

// New instance using a constructor

myCar = new Car(2022, 15, "blue");

}

New calls the constructor for

the class. Parameters are

passed in to the constructor

like a method call.

© 2021 Arthur Hoskey. All
rights reserved.

Memory After Constructor Runs

int
year
2022

int
speed
15

String
color
"blue"

int
speed

String
color

Computer Memory (RAM)

myCar

variable

© 2021 Arthur Hoskey. All
rights reserved.

Data Types

 Java data types are divided into two
major categories:
Primitive and Reference

 Primitive types are the following:
boolean, byte, char, short, int, long, float,
double

 Class instances are reference types

 You must call the “new” operator to
instantiate a reference type

© 2021 Arthur Hoskey. All
rights reserved.

Wrapper Data Types

 There are reference versions of the primitive types
(wrapper classes).

 These can be used when you need to put a primitive value
where a reference value is required.

Primitive Type Wrapper Class for Primitive Type

int Integer

double Double

char Character

byte Byte

boolean Boolean

short Short

long Long

float Float

© 2021 Arthur Hoskey. All
rights reserved.

Wrapper Data Types

Mailing a Phone

To mail a phone you must put in in a box (or package of
some sort). The post office will not mail it unless it is
properly packaged.

Box

PhonePhone

Put phone in a box to mail it.

This is "boxing" the phone.

Now phone

can be mailed

Box

Phone Phone

Take the phone out of the box

when it reaches its destination.

This is "unboxing"

Box reaches

destination

© 2021 Arthur Hoskey. All
rights reserved.

Wrapper Data Types

int i = 20; // Declare the primitive type

Integer iw; // Declare the wrapper instance

iw = new Integer(i); // Create instance and pass in primitive value

int value;

value = iw.intValue(); // Get primitive value from wrapper class

Integer

2020

Putting a primitive type in a

wrapper class is called “Boxing”i
iw

Integer

20

iw

20

i
Taking primitive type out of

wrapper class is called "unboxing"

© 2021 Arthur Hoskey. All
rights reserved.

Inner Classes

 An inner class is a class defined inside of
another class.

 The inner class can be used as a "helper"
for the outer class.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Inner Classes

public class Car

{

public class Helper

{

// Class Helper members here…

}

// Class Car members here…

}

public class Main {

public static void main(String[] args) {

Car c;

c = new Car();

Car.Helper h;

h = c.new Helper();

}

Helper is an inner class. It is

defined within Car (it does not

have to be named Helper).

Create an instance of

the outer class first

Create an instance of the inner

class using the outer class

instance. Call new with respect

to the outer class instance.

© 2021 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: REVIEW - Access Modifiers
	Slide 4: REVIEW - Sample Class Definition
	Slide 5: REVIEW - Access Modifiers
	Slide 6: REVIEW - Access Modifiers
	Slide 7: REVIEW - Get and Set Methods
	Slide 8: REVIEW - Get and Set Methods
	Slide 9: REVIEW - Scope of variables
	Slide 10: Variable Resolution
	Slide 11: Classes In Memory
	Slide 12: Variables In Memory (RAM)
	Slide 13: Classes In Memory
	Slide 14: Variables In Memory (RAM)
	Slide 15: Classes In Memory
	Slide 16: Classes In Memory
	Slide 17: Classes In Memory
	Slide 18: Classes In Memory
	Slide 19: Classes In Memory
	Slide 20: Classes In Memory
	Slide 21: Classes In Memory
	Slide 22: Access Modifiers
	Slide 23: Classes In Memory
	Slide 24: Classes In Memory
	Slide 25: Classes In Memory
	Slide 26: Classes In Memory
	Slide 27: Classes In Memory
	Slide 28: Classes In Memory
	Slide 29: Classes In Memory
	Slide 30: Classes In Memory
	Slide 31: Calling a Method
	Slide 32: Calling a Method
	Slide 33: Calling A Method
	Slide 34: Constructors
	Slide 35: Constructors
	Slide 36: Constructors
	Slide 37: Memory After Default Constructor Runs
	Slide 38: Constructors
	Slide 39: Constructors
	Slide 40: Constructors
	Slide 41: Constructors
	Slide 42: Constructors
	Slide 43: Constructors
	Slide 44: Memory After Constructor Runs
	Slide 45: Data Types
	Slide 46: Wrapper Data Types
	Slide 47: Wrapper Data Types
	Slide 48: Wrapper Data Types
	Slide 49: Inner Classes
	Slide 50: Inner Classes
	Slide 51: End of Slides

